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A graph G is claw-free if it contains no induced subgraph isomorphic to the complete
bipartite graph K &2 Such graphs have been widely studied with respect to such other
graph properties as matching {ef~-Sumner {13, 14] -and Las Vergnas [5])," perfection (cf.
~+ 'Parthasarathy and Ravindra {9]}, vertex-packing (cf. Minty 7] and Sbihi [12]}, Hamilto-
nian cycles and related questions on traversability (cf. Oberly and Sumner [8], Clark [1]
and Kanetkar and Rao [4])"and reconstruction (cf. Ellingham, Pyber and Yu (2]).

-+ A planar graph is said to be maximal planar (or a triangulation) if, given any
imbedding of G in the plane, every face boundary is a triangle. We-shall-use¢ the abbre-
viations MAXP and CFMAXP  for the properties mazimal planar and claw-free mazimal
planar respectively. (Recall that every maximal planar graph with at least three points is
either the complete graph K3 or else is 3-connected and thus it follows that such a graph
has a unique imbedding in the plane.) = .

In Section 2 of this paper, we present a constructive characterization of the family
of CFMAXP graphs. In particular, the characterization proceeds as follows. First it is
shown that if G is a 3-connected claw-free planar graph, then maxdeg G < 6. We then
show that there are precisely 8 such graphs with maximum degree no greater than 5. If
G is CFMAXP and has maxdeg G = 6, then G must have separating triangles and we fix
our attention on these next. A special kind of separating triangle, called a separating
345-triangle, turns out to be the key to the characterization. If G is CFMAXP and has
separating triangles, but no separating 345-triangles, then G is 1 of precisely 7 graphs.
Finally, if G has a separating 345-triangle, we show that G must belong an infinite family
of graphs which can easily be described recursively.

In Section 3, we present some results on traversability in CFMAXP graphs and in
Section 4, some results on matching for this family of graphs.

Throughout this paper, we wriie u ~ v when points u and v of a graph are joined by
a line. Also if F is a face of a planar graph G, we shall write 3F for the boundary of F.
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1. Introduction and Terminology

2. The Characterization

First it will be shown that every arbitrary 3-connected claw-free planar graph G has
maxdeg G < 6. (That is, the graph need not be mazimal planar.)
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Theorem 2.1. If G is 3-connected claw-free and planar, then
(2) maxdeg G < 6, and
(b) if v has degree 6 in G, then v lies on at least two separating triangles.

Proof. Suppose that point v € V(G) has deg v > 7 and suppose the neighbors of v
(in clockwise order)-are uy,...,u7,...,u%,, Where r > 7.

First suppose all faces at v are triangles. We claim that there is an s such that
u; ~ u;42, where the subscripts are taken modulo r. If u; ~ u3 or u3 ~ ug we are done, so
suppose neither adjacency holds. Then, since there is no claw at v, we must have u; ~ ug.
But then again, since there is no claw at v, either uz ~ ug or us ~ u7 and the Claim is
proved.

So, renumbering if necessary, we may suppose that u; ~ uj. Since Glv,uz,u,_2,4,]
is not a claw, u,_5 ~ u,. But then by planarity, Glv,us,u4,u,—1] is a claw, contrary to
hypothesis.

So we may suppose at least one of the faces F at v is not a triangle. Without loss of
generality, suppose lines vu; and vu; lie in F.

1. First suppose u; # u;. Then by claw-freedom, either u; ~ uz or uz ~ ug.

1.1. Suppose that u; # uz, so that u; ~ uz. Then by claw-freedom, subgraph
Glug,...,u7,...,u,] is a complete graph and since r > 7 it follows that G[v,u4, us,ue, u7]
is isomorphic to K, contradicting the planarity of G via Kuratowski’s Theorem.

1.2. So suppose u; ~ usz. Then by claw-freedom, either u4 ~ u; or ugy ~ u;. First,
suppose u4 ~ u;. Then by claw-freedom, Gv,us,ug,u7,...,u,] is complete and since
G is planar, once again by Kuratowski’s Theorem, we have r = 7 and G[v, us,ue,u7] is
complete. But then Glv,u1,u2,ug] is a claw, a contradiction.

So suppose that u4 7 u; and hence u4 ~ uz. Then G|v,us, ug,u7,...,u,] is complete
by claw-freedom, and hence G[v,u;,u3,ug| is a claw, again a contradiction.

2. So suppose that u; ~ us. Thus since 3F contains at least 4 points, we have that
{u1,u3} is a 2-cut in G, contradicting the assumption that G is 3-connected.

This completes the proof of (a).

In order to prove (b), let us suppose that deg v = 6 and as above, let the neighbors of
v in clockwise order be u,,...,ug. By claw-freedom, we may assume that either u; ~ uj
or u; ~ ug.

1. Suppose u; ~ uz. Then by claw-freedom, us ~ ug and we have point v lying on 2
separating triangles (vujuav and vu ugv) as claimed.

2. So suppose that u; % u3 and hence u; ~ uz. By symmetry, we may also suppose
that uz; # uy, uz # us, ug # ug, us % u; and ug # uy. But then Gv,u;,u3,ug) is a claw,
contrary to hypothesis. ]

We then have the following immediate corollary.

Corollary 2.2. If G is a 3-connected claw-free planar graph with no separating
triangle, then maxdeg G < 5. (]

We are now prepared to find all claw-free mazimal planar graphs containing no sepa-
rating triangle.




Figure 1
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Theorem 2.3. Let G be a CFMAXP graph with no separating triangle. Then:

(a) if maxdeg G = 2, G = Kj;

(b) if maxdeg G =3, G = Kyg;

(c) if maxdeg G = 4, G is the octahedron (cf. graph G(6) in Figure 1);

(d) and if maxdeg G = 5, then G is one of the five graphs G(7), G(8), G(9), G(10) or
G(12) shown in Figure 1.

Proof. Parts (a) and (b) are trivial.

(c) Suppose maxdeg G = 4 = deg v. Let the 4 neighbors of v be uj,uz,u3 and uq (in
a clockwise orientation about v). Since G is MAXP, u; ~ u3 ~ uz ~ uq ~ u; and the four
corresponding triangles are faces. Moreover, again since G is MAXP, cycle ujujusuqu; is
not a face boundary in G. So, without loss of generality, we may assume deg u; = 4. Let
w be the fourth neighbor of u;. Then by MAXP, w ~ u; and w ~ uq. But now since
deg u; = 4, we have, by MAXP, that w ~ uz and hence G is the octahedron.

(d) Finally, suppose that maxdeg G = 5 = deg v. As before, let {u1,...,us} be the
neighbors of v in a clockwise orientation about v. By MAXP, u; ~ ug ~ uz ~ u4 ~ ug ~
u;. As before, we may assume without loss of generality that deg u; > 4.

Since G has no separating triangle, we may assume that u; o uz and u; # u4. So let
w; ¢ {u2,u3,uy,us} be a fourth neighbor of u,. There are two cases to consider.

1. First suppose that deg u; = 4. Then by MAXP, w; ~ uz and ug. If deg w; = 3,
then by MAXP, uz ~ us and we get a separating triangle vusw,uqv, a contradiction. So
deg w, > 4.

1.1 Suppose deg w, = 4.

1.1.1. Suppose w; ~ u3z. Then, since G is 3-connected, triangle wiuzu,w, is a face
and deg us = 4. Now uz 7 ug since G contains no separating triangle. But deg w; = 4
then implies that G is not MAXP, a contradiction.

1.1.2. So suppose that w; # uz. By symmetry, we may also assume that w; # u4. So
let z be the fourth neighbor of wy, z ¢ {u1,u2,u5}. By MAXP, = ~ uz,us and triangles
wizu, and wyzug are face boundaries. Moreover, deg u2 = deg vy = 5. Thus MAXP
implies that £ ~ u3,u4 and hence deg £ = 5. So triangles u,zuz and ugzru, are face
boundaries and by 3-connectedness, deg uz = deg u4 = 4. Thus we get graph G(8) on 8
points.

1.2. So suppose deg w; = 5.

1.2.1. Suppose w; ~ ug.

Then since G has no separating triangle, triangle wjusus is a face and hence deg u; =
4,

Now suppose that w; ~ u4. Then deg w; = 5 implies that triangle wiugu is a face
as is triangle wyuguy. So G must be the 7 point graph G(7).

So suppose that w; # uy. Let 2 be the fifth neighbor of w,. Since deg w; =5 and G
is MAXP, it follows that z ~ ug and hence deg us = 5, so triangle w,ug2 is a face as is
triangle zugus. But then by MAXP, it follows that z ~ u3, deg u3z = 5 and triangle zw, u3
is a face. Hence by 3-connectedness, G is the 8-point graph shown in Figure 2. But we
have drawn and labeled it there so that it is obvious that it is isomorphic to graph G(8)
of Figure 1.
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1.2.2. So suppose that w; # uz (and by symmetry, that w; # uy as well). Let
the fourth and fifth neighbors of w; be z; and z;. So we may assume by MAXP that
ug ~ 2} ~ z3 ~ u;. But then deg w; = 5 implies that all triangles at w; are faces.
Furthermore, we also have that deg u; = deg us = 5. Hence MAXP implies that z; ~ u4
and 2z, ~ u3. Also triangles z;usuy4 and 25uzu3 are both faces.

Now suppose that z; ~ u3. Then we must have that G is the 9 point graph G(9) of
Figure 1.

So suppose that 23 % ujz and by symmetry that z; # us. By MAXP, 2; must have
a fifth neighbor a. Again by MAXP, point a ~ 22 and triangle az;2; must be a face. So
deg 22 = 5. Thus a ~ ua,us. So then deg uz = deg u4 = 5 and G is the 10 point graph
G(10) of Figure 1.

2. So suppose that deg u; = 5. By symmetry, we may also assume that deg u, =
deg uz = deg u4 = deg ug = 5 as well. Let the remaining 2 neighbors of u; be a; and 8,
in clockwise order about u;. So triangle a;8;u; is a face boundary. The fifth neighbor of
u, cannot be aj,u4 or ug since G contains no separating triangle. So let this fifth neighbor
be a; where a; ¢ {v,uy,...,us,a;,8;}. Then we must have a; ~ B;,u3. Let the fifth
neighbor of u3 be az. Now a3 # 8;, us since there are no separating triangles.

2.1. First suppose a3 = a;.

Now suppose deg #; = 4. Then by MAXP, a; ~ az. So deg a; = 5 and then
3-connectedness implies that deg u4 = 3 and deg us = 4. Thus G is not MAXP, a contra-
diction.

So suppose that deg §; = 5. Let « be the fifth neighbor of 8;,. Then MAXP implies
that v ~ a3 and v ~ a;. But then 3-connectedness implies that deg u4 = 3 and deg ug = 4
and once again we contradict the hypothesis that G is MAXP.

2.2. So suppose that a3 # a;. Thus asz ¢ {v,u;,...,us,a;,f1,az}. But then
deg uz = 5 and MAXP implies that az ~ a3, uq4.

2.2.1. Suppose ugy ~ a;. By MAXP we must have a; ~ a3 and hence deg a; = 5.
But then again by MAXP we must have a3z ~ 8, and deg a3 = 5. Hence deg 8, = 5. So
G is the graph shown in Figure 3 which is isomorphic to graph G(10).
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Figure 3

2.2.2. So suppose u4 # a;i.

2.2.2.1. Suppose ug ~ B;. Then deg uy = deg #; = 5 and by 3-connectedness we have
deg us = 4 and deg a; = 3. But this contradicts MAXP.

2.2.2.2. So we may assume that uq # aj,0;. So let the fifth neighbor of u4 be ay.
Since deg u4 = 5 and since G is MAXP it follows that ay ~ a3,us. So deg us = 5 and
hence a4 ~ a;. (At this point, we have the graph shown in Figure 4.)

Figure 4

Now let us consider the possibilities for point a;.

If a; ~ ag, then the degree of each is 5. But then by 3-connectedness, {as, a4} does
not contain a cutset of G, and hence deg oy = deg a3 = 4. But this contradicts MAXP.

If ay ~ aa, we get a similar contradiction.

Next suppose that a; has a fifth neighbor ag, where as ¢ {8;,u)1,us,a4}. Then since
deg a; = 5 it follows that ag ~ f;,a4. Then deg #; = 5 and hence ag ~ a;. Hence
deg a2 = deg ag = 5 and since G is MAXP, it follows that ag ~ as. So G must be the
icosahedron labeled G(12) in Figure 1.

So finally suppose that deg a; = 4. By symmetry, we may also suppose that deg §8; =
4. But then we contradict the fact that G is MAXP and the proof of the theorem is
complete. |

We now fix our attention on CFMAXP graphs which contain separating triangles.

The concepts of a 845-triangle and a 845-nest will prove central to our considerations.
Any triangle (not necessarily a face boundary) in a CFMAXP graph G naturally separates
the plane into two open regions R; and R, where, without loss of generality, we will call
R, the interior of the triangle. Now let T3 be such a triangle in CFMAXP graph G where

6




V(Ts) = {a1,a2,a3} and a; sends ¢ lines into region R;. We will call such a triangle T3 an
(interior) 345-triangle.

Now suppose j > O points of G lie interior to 345-triangle T3. If y = 0 then T3 is a
face boundary. In this case, denote the triangle, together with the half-lines in region R,
incident with the three points of T3, by No.

Next, suppose 7 = 1. Suppose a4 is the only point of G interior to T3. Now since G
is 3-connected, point a4 is adjacent with all three points a;,a2 and a3. So by Theorem
2.1, deg a3 = 6 and triangles azasa; and azaqas are face boundaries. Since there are no
other points interior to T3, triangle a4aja; is also a face boundary. Denote this 4 point
configuration including the 5 half-lines emanating from a;,a2 and a3 into the exterior
region Rz by N;.

If y = 2, and a4 and ag are the two interior points, then without loss of generality, we
may assume that a4 is adjacent to a;. a; and a3 and by Theorem 2.1, deg a3 = 6. Hence
triangles azaqa; and azaqay are face boundaries. So ag is interior to triangle ajazas and
by 3-connectedness, as ~ a;, a2 and a4. Hence all three triangles at as are face boundaries.
Denote the 5-point configuration (together with the 5 half-lines into region R;) by N,.

Suppose 7 = 3 and that points a4,as and ag are interior to T3. Then without loss of
generality, we may assume that a4 ~ a,,a3,a3, ag ~ a1,a; and a4, that ag is interior to
triangle a;a4as and that ag ~ a;,a4 and as. So we have 7 triangular faces interior to Tj.
Denote the resulting 6 point configuration (together with the half-lines into R3) by Na.

In Figure 5, we display configurations No, Ny, N2 and Nj. (It is important to realize
that the triangle a4a5a¢ is also a 345-triangle.)

Figure §




Now we continue to define N,’s, 5 > 4, inductively as follows. Suppose that points
a1,82,...,G,, 8 < J, have been labeled so that a, is adjacent to a,-1,2,—2 and a,-3s.
Then there remain ) — s > 0 points interior to 345-triangle T, = a,a,_1a,-2. Since
deg a,_2 < 6 and T, is a separating triangle, it follows that a,_; is adjacent to exactly one
point interior to T,. Label this point a,431. Then deg a,—2 = 6 and by MAXP we must
have a,+1 ~ a,,a,—; and triangles @, 1a,-.12,~2 and a,41a,a,—2 must be face boundaries.

In this way, a unique labeling of all 1 points interior to T3 is obtained and the struc-
ture of G interior to T3 is completely determined. Call the subgraph of G induced by
{ay,...,a;} together with the half-lines from points a;,a; and a3 into region R; the (in-
terior) 345-nest N; based at a;,a; and a3.

Now suppose interior 345-nest N; forms part of a CFMAXP graph G. Let the unique
ezterior neighbor of a; be b;. Since line a;b; is the only line from a; to the exterior region
R,, it must be the case that ; ~ a;,a3 and triangles b;a1a2 and b1a;a3 must be face
boundaries. Let b, be the second neighbor of az in R2;. Then since azb; and azb; are
the only two lines from a; into R,, triangles azb,42 and azbza3 must be face boundaries.
Finally, let b3 be the third point in R, adjacent to az. Then b3 ~ b;,b; and triangles
bsbiaz and babzag are also face boundaries. (See Figure 6.)

Figure 6

Moreover, we now see that the three points of triangle b;b263 send 3, 2 and 1 lines
respectively into region R;. Thus we may call triangle bybsbs = T4 an (ezterior) 845-
triangle. Clearly, if k > 0 points of G lie in R, but exterior to T;, we can repeat our
argument about the interior of triangle T3 to conclude that the k points of G exterior to
T3 can be labeled b4, 05,...,bk4+3 so that by ~ b;,b2 and bg, bs ~ by, b, and by, bg ~ by, by
and bg and for k > 4, bxya ~ bry2,bx41 and bx. We call the resulting configuration
(together with the 6 half-lines from &,,; and b3 into the interior of triangle b;b3b3 = T3)
an exterior nest Ny. Finally, we call graph G the amalgamation of nests N; and N}
at triangle T3 = a;a;a3 and write G as N; ® N|.
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We have thus proved the first half of the following theorem.

Theorem 2.4. Given any CFMAXP graph G with a separating (interior) 345-triangle
T3 = ajaqa3, G can be expressed as the amalgamation of 2 nests N; ® Ny at Ts.

Conversely, the amalgamation of 2 nests N; ® N| at a 345-triangle T3, 57> 1, k>0
results in a CFMAXP graph.

Proof. To prove the second half of this theorem, we need onlv check that N; ® Ny
is claw-free. Moreover, by MAXP, we need only check for claws at points of degree 6.
Finally, by symmetry, it suffices to check only those points of degree 6 in the nest N; and
therefore in the graph G; = N; ® N, for ¢ > 1.

It is easy to check by hand that Go,G;,G2 and G3 have no claws. (They have 0,1,2
and 3 points of degree 6 respectively.)

Now suppose G, has no claws for 3 < r < ¢ and consider graph G,4+;. Graph G,
is obtained from G, by inserting one new point a,;4 inside triangle e, 3a,42a,4+1 in G,
and joining a,44 to each of these 3 points. The only newly formed point of degree 6 is
a,4+; which is adjacent to a,,a,_; and a,_2 by definition of G,_3,G,_, and G,, as well
as to @,42,8,43 and a,+4. Now in G, ,, there are 6 triangular faces at point @, 4. In
addition, a,4+3 ~ ar4+2 by definition of G, and a,_; ~ a,_3 by definition of G,_3. It thus
follows that there are no claws at a,4;.

Thus G, 41, and hence by induction, all G,’s are claw-free. |

Corollary 2.5. Let G be CFMAXP with a separating 345-triangle. Then G contains
precisely 2 points of degree 3.

Proof. From the preceding theorem we can write G = N; ® N;, and each of the 2
nests contains exactly 1 point of degree 3. |

Now with the idea of separating 345-triangles in mind, we can proceed with our
characterization of CFMAXP graphs.

Theorem 2.8. Suppose graph G is CFMAXP with a separating triangle, but no
separating 345-triangle. Then G must be one of the 7 graphs displayed in Figure 7.

Proof. Let T = abc be a separating triangle. From Theorem 2.1 we know that
maxdeg G < 6. Moreover, by 3-connectedness, we know that each of the points a,d and
c sends at least one line interior to T and at least one line exterior to T'. We proceed to
check all possibilities. For z = a,b and ¢, let us denote by m, and n, the number of lines
from z into the interior of T and into the exterior of T respectively.

1. mg=mp=m,=1.

1.1. Suppose n, = np = n, = 1. There must be a neighbor u; of both a and b in the
interior of T such that triangle abu; is a face. Then ¢ ~ u; too and all triangles at u,
must be face boundaries. Similarly in the exterior of T. Thus G must be isomorphic to
G(5) in Figure 7.

1.2. Suppose n, = 2 and ny = n, = 1. Let the exterior neighbors of a be u,
and uz. Then dega = 5 and by MAXP, u; ~ us ~ b and u; ~ ¢. So all triangles
au,uz, auzb,abv,avc,acu; must be face boundaries. Since G is MAXP, there must be a
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point ua exterior to the quadrilateral bcujuz. But then {u;,u,} must contain a cut in G,
contrary to 3-connectedness.

1.3. Suppose n, = 3 and np = n, = 1. Let the exterior neighbors of ¢ be u;,uz; and
u3. Then deg a = 6,50 ¢ ~ u; ~ uz ~ uz ~ b and we must have 6 triangular faces at
a. Since there is no claw at a, u; ~ uz. Also since deg § = 4, triangle bve must be a
face. But then since quadrilateral bcujug is not a face, {u;,u3} must contain a cut in G,
contradicting 3-connectedness.

1.4. Suppose ng = np = 2 and n. = 1. Again let u; and u, be the exterior neighbors
of a. Again we must have ¢ ~ u; ~ uz ~ b and 5 triangular faces at point a. Also, since
deg ¢ = 4, triangle cvb is also a face.

1.4.1. Suppose the second exterior neighbor of b is v;. Then triangle bu,u, must be
a face as must triangle bcu,. so we obtain graph G(6a) shown in Figure 7.

1.4.2. So suppose the second exterior neighbor of b is point uz, u3 # u;. Then
deg b = 5 and by MAXP we have u; ~ uz and uz ~ ¢. But this contradicts the assumption
that n. = 1.

1.5. Suppose n, = 3, np = 2and n, = 1. Let the remaining three exterior neighbors of
abe uy,us and uz labeled so that the clockwise order of all 5 neighborsof ais b, ¢, uy, u2, us.
Then since deg b = 6, we must have ¢ ~ uy ~ us ~ uz ~ b. Since there is no claw at a,
points u; and uz must be adjacent. So there are 6 triangular faces at point a and since
deg ¢ = 4, it follows that triangle cvb is also a face. Since G is MAXP, it follows that
u; ~ b and hence triangle u,bc is a face. Furthermore, deg b = 5 implies that there are no
more points outside triangle bujus; i.e., triangle bu,us is also a face boundary.

Now if there are any points exterior to triangle uuasug, then triangle ujujus is a
separating 345-triangle, contrary to assumption. So triangle ujuju3 is a face boundary
as well. So graph G has 7 points, but contains a separating 345-triangle, namely u,u3a,
contrary to assumption.

1.6. Suppose n, = np =3 and n, = 1.

So ¢~ u; ~us ~uz~ band we have 6 triangular faces at a. Also, since there is no
claw at @, we have u; ~ uaz. Moreover, b ~ u; and triangle bcu, is a face, since deg ¢ = 4
and G is MAXP. Let u4 be the sixth neighbor of b. Then uy4 is in the interior of triangle
ujugb. Since deg b = 6, we have uq ~ us, uy and six triangular faces at point b. But then
G(uy,¢,uz,uy4] is a claw, contrary to hypothesis.

1.7. Suppose n, = np = n, = 2.

Let u; and uy be the two exterior neighbors of a. Then ¢ ~ u; ~ u; ~ b and there
are 5 triangular faces at a. Since G is planar, there exists a point usz exterior to the
quadrilateral bcuju; such that either b or ¢ is adjacent to uz. By symmetry, without loss
of generality, we may suppose that & ~ u3. Since deg b =5, ¢ ~ u3z ~ uz and there must
be 5 triangular faces at b. Since deg ¢ = 5, u; ~ u3 and triangle u;cu3 is a face boundary.

1.7.1. Suppose deg uz = 4.

Then triangle ujuzu3 is a face boundary and G must be the 7 point graph G(7a).

1.7.2. Suppose deg uz = 5.

Then let u4 be the fifth neighbor of uz. Since deg ug = 5 it follows that uy ~ u;,u,
and there are 5 triangular faces at ug.

1.7.2.1. Suppose deg uq = 3.
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Then G must be the 8 point graph G(8a).

1.7.2.2. Suppose deg u4 = 4.

Let ug be the fourth neighbor of u4. Then, since deg uqy = 4, it follows that us ~
1,42 and that there are 4 triangular faces at uy. But then Glu;,a;,u3,us) is a claw, a
contradiction.

1.7.2.3. Suppose deg uq = 5.

Let the 2 remaining neighbors of us be up and ug. Since deg uq = 5, we may suppose
that ug ~ u,ue, ug ~ uz and that there are 5 triangular faces at u4. Moreover, since G is
MAXP, there exists a point w in the exterior of quadrilateral ujususug. But then deg u; =
deg u, = 6 implies that {ug,ug} contains a cutset of G, contradicting 3-connectedness.

1.7.2.4. Finally, suppose deg u4q = 6.

Let ug,ug,u7 be the 3 remaining neighbors of u4. Then we may suppose that u; ~
ug ~ ug ~ uy ~ ugz and there are 6 triangular faces at u4. Since there is no claw at
u4, points us and u; are adjacent. But then since {us,uz} is not a cutset and since
deg u; = deg uy = 6, quadrilateral v usuq,us must be a face boundary, contrary to the
MAXP hypothesis.

1.7.3. So we may suppose deg uz = 6.

Let wgs and ws be the remaining 2 neighbors of uzg. Then we may suppose that
w4 ~ Uy, Ws, W ~ Uy and that there are 6 triangular faces at uj. Since there is no claw
at ug, it follows that wg ~ u;. So deg u; = 6 and there are 6 triangular faces at point u;.
But then Glugz,c,uz,wy] is a claw at ug3, a contradiction.

1.8. Suppose n, =3 and np = n, = 2.

As before, since deg a = 6, it follows that ¢ ~ u; ~ u3 ~ uz ~ b and there are 6
triangular faces at a. Moreover, u; ~ u3 since there is no claw at a.

1.8.1. Suppose b ~ u;.

Since deg b = 5, triangle bu,u3; must be a face boundary. Suppose deg u; = 5. Then
triangle uau,a is a separating 345-triangle, contrary to hypothesis. So deg u; = 6. Let uq
be the sixth neighbor of u;. If u, is interior to triangle u,usu,, triangle u;uza is again
a separating 345-triangle. So u4 is exterior to triangle u;bc and hence triangle ujuzus
is a face boundary. On the other hand, deg u; = 6 implies that u4 ~ b,c. But then
Glb,v,u3,uy4] is a claw, a contradiction.

1.8.2. So we may suppose that b and u; are not adjacent.

By symmetry, we may also suppose that ¢ and u3 are not adjacent as well. Let w be
the fifth neighbor of b. Since m, = my = m, = 1, point w must lie outside quadrilateral
bcuyuz. But then deg b = 5 implies that w ~ ¢,u3,u; and that there are 5 triangular faces
at b and at c.

1.8.2.1. Suppose deg u; = 5.

Then triangles ujusujz and ujuzw must be face boundaries and G must be the 8 point
graph G(8b).

1.8.2.2. So suppose deg u; = 6.

Let = be the sixth neighbor of u;. If z is interior to triangle u usu3, then Glv,, z,a,w)
is a claw, while if z is exterior to triangle ujuzus, then Gluy,z,us,¢| is a claw.

1.9. Suppose n, = ny = 3 and n, == 2. Once again, let u;,uz; and ug be the 3
neighbors of a exterior ‘o triangle abc (where we shall assume that u,,us,u3,b and ¢ are
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in clockwise order about point a). Then ¢ ~ ¥y ~ uz ~ uz ~ b and there are 6 triangular
faces at a. Moreover, since there is no claw at a, points u; and u3 must be adjacent.

1.9.1. Suppose b ~ u,.

If w is exterior to triangle u;bc, then Glb,w,v,u3) is a claw at b. So w is interior
to triangle ujuzb. So deg b = 6 and by MAXP it follows that w ~ u3 and there are 6
triangular faces at b. But this contradicts the assumption that n. = 2.

1.9.2. So suppose b # u; (and by symmetry, that ¢ # uy).

So let w; and w; be the two neighbors of b outside quadrilateral bcujuz. Since
deg b = 6, by MAXP we may assume that w; ~ ¢ and wy ~ u3. Moreover, since there are
6 triangular faces at b, it must also be the case that w; ~ w; and triangle bw w; is one of
these faces. Since there is no claw at b, points w; and u3 are adjacent. So deg u3 = 6 and
therefore, triangles © usuz and uaw;w;, are also face boundaries. Finally, also by MAXP,
it must be that u; ~ w; and the triangle u,u3w; must be the boundary of the infinite face
at ug.

Now if deg u; = 5, then triangle ujw;c is a face boundary and G is the 9 point
graph G(9a). So suppose that deg u; = 6. Let the sixth neighbor of u; be w3. Then w3
must lie in the interior of triangle ujcw;. But then by MAXP, w3 ~ ¢, contradicting the
assumption that n, = 2.

1.10. Suppose ng =np =n, = 3. .

Again, let the six neighbors of a, in a clockwise orientation, be b,v,¢,u;,u, and us.
As before, b ~ u; ~ uy ~ uz ~ b, there are six triangular faces at point e and since there
is no claw at a, points uy and uz are adjacent.

1.10.1. Suppose b ~ u;.

Let w; be the sixth neighbor of point b. If w; lies in the exterior of triangle ubec, then
G|b,w;,v,u3)] is a claw. So w; must lie in the interior of triangle u;uzb. Since deg b = 6
and by MAXP we have w; ~ u3, w; ~ u; and triangles wibu; and w;uzu; must be face
boundaries. But then Glu;,uz,w),c] is a claw at u;.

1.10.2. So suppose b # u; (and by symmetry, ¢ # us).

Let w; and wy be the remaining 2 neighbors of b so that in a clockwise order, the 6
neighbors of b are a,u3, w3, w;,c and v. Then ¢ ~ w; ~ wy ~ ug and there are 6 triangular
faces at b. Since there is no claw at b, wy ~ uz. Also since deg ug = 6, it follows that
triangle uawow, is a face boundary, u; ~ w; and triangle u;uzw,; is a face boundary, and
finally, that triangle v usug is a face boundary.

Now let w3 be the sixth neighbor of ¢. Then w3 is interior to triangle u,cw;. Also
deg ¢ = 6 implies that w3 ~ uy,w;, that there are 6 triangular faces at ¢ and hence also
at u;. So G must be the 10 point graph G(10a). This completes Case 1.

2. Suppose m, = 2 and my =m, = 1.

Let the interior neighbors of @ be uy,u3. Then we may suppose that ¢ ~u; ~uy; ~ b
and triangles acuj,au;uz and auzb must be face boundaries. However, since {u;,u2} does
not contain a cutset of G, it follows that quadrilateral beuju; is a face of G. But this
contradicts the hypothesis that G is MAXP.

3. Suppose mya =3 and m, = m_, = 1.

Arguing in a manner similar to that in Case 2, it is easily seen that the interior face
which contains line bc in its boundary cannot be a triangle. So once again, MAXP is
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contradicted.

4. Suppose m, = mp =2 and m, = 1.

Let u; and ug be the 2 interior neighbors of a so that ¢ ~ u; ~ u; ~ b and triangles
acu,,au u, and auzb must be face boundaries. Also since m, = 1, it follows that b ~ u,
and triangle u;bc is a face boundary.

4.1. Suppose ng =1 and np =n, = 2.

But then triangle u;ab must be a separating 345-triangle which is a contradiction.

4.2. Suppose ng = 1,np, = 2 and n, = 3.

Then triangle abc is a separating 345-triangle.

4.3. Suppose n, = np =2 and n. = 1.

Let w;, w2 be the 2 exterior neighbors of a. Since deg @ = 6 and G is MAXP, it follows
that b ~ wy ~ wy ~ ¢ and there are 6 triangular faces at a. Points b and w, are adjacent
since deg ¢ = 4. But then G|b,wy,uz,¢] is a claw at b.

4.4. Suppose ng =np =n, = 2.

Let w; and w; be as in Case 4.3. Again we have that ¢ ~ w; ~ wy; ~ b and G has
6 triangular faces at a. Since there is no claw at b, points ¢ and w, must be adjacent.
Moreover, since deg ¢ = 5, triangles cw;w; and bcw,; must be face boundaries. Hence we
obtain a 7 point graph in which triangle wyca is a separating 345-triangle.

4.5. Suppose ng = np = 2 and n, = 3.

Again let w; and w, be as in Case 4.3. As before, ¢ ~ w; ~ wy ~ b and we have 6
triangular faces at a.

4.5.1. Suppose b ~ w,.

Then deg b = 6 implies that there are 6 triangular faces at b. Hence {w;,c} must
contain a cutset of G contradicting 3-connectedness.

4.5.2. So suppose b % w;.

Let w3 be the second exterior neighbor of . Since deg b = 6, we must have ¢ ~ w3 and
w2 ~ w3. Also, since there is no claw at b, it follows that ¢ ~ wz. But then Glc,u;, wi,ws)
is a claw at c.

It is straightforward to see that, due to symmetry, there remains only one additional
case to treat.

5. Suppose my =my =m,=ng = np =n. = 2.

Let u; and uz be the 2 internal neighbors of a. Since deg a = 6 by MAXP we have
that ¢ ~ uy; ~ uz ~ b and triangles acu;,au u; and auzb are face boundaries.

Suppose b ~ u;. Then triangle bu,c is a face boundary and hence m. = 1, contrary
to assumption. So b # u;. By symmetry we may also assume that ¢ # u, as well. So let
u3 be the second interior neighbor of 4. Since my = 2, we have uz ~ uz ~ ¢ and hence
both triangles bujaugz and busc are face boundaries. Moreover, since m, = 2, it follows that
u; ~ uj and that triangle cu,uj is a face boundary as well.

Now let w; and w3 be the 2 exterior neighbors of a. Since deg a = 6 we may assume
that ¢ ~ wy ~ wy ~ b and that there are 6 trianguiar faces at a. Since there is no claw at
a, points w; and b must be adjacent. But then G|a,w3,u2,¢] is a claw, contradicting the
hypothesis and completing the proof of the theorem. [ |
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3. Traversability in CFMAXP Graphs

Historically, the first theorem about Hamilton cycles in MAXP graphs seems to be
the following classical result due to Whitney [15).

Theorem 3.1. If G is MAXP with no separating triangle, then G has a Hamilton
cycle. | |

As is customary, let us denote the set of all points adjacent to a point v by N(v) and
cali the induced subgraph G[N(v)] the neighborhood graph of v in G. Graph G is said
to be locally n-connected if for all v € V(G), G{N(v)] is n-connected.

In order to present some more recent results on traversability in MAXP graphs, we
shall need the following easy lemma relating MAXP and local n-connectivity.

Lemma 3.2. Let G be a connected planar graph with |V (G)| > 4. Then G is MAXP
if and only if G is locally 2-connected.

Proof. If G is MAXP and v € V(G), then G|[N(v)] is a cycle and hence 2-connected.

To prove the converse, let us suppose that G is locally 2-connected, but has a face
F = uy:--uj of size k > 4. Consider N(u;). Since G is 3-connected, we know that
N(u;) contains uz,uy and at least one other point. If u; ~ u;, for some j, 2 < j < k, then
{u1,u;} is a 2-cut in G contradicting 3-connectedness. So N(ui)N{uy,...,ux} = {uz,ux}.

Let v be a third neighbor of u;, v ¢ {u3,ux}, and let G{N(v)] be denoted by G,.
Since G, is 2-connected, there is a cycle Z through points u, and u; where Z C G, and
hence Z contains only 2 points of the boundary of face F', namely u; and ux. Now cycle
Z can be thought of as the union of two openly disjoint paths P; U P, where each path P;
joins u3 to ug, but V(Py) NV (P;) = {uz,ux}.

Suppose each Py contains at least 3 points. Then Py U P U {ujuz,uzu;} U (9F — ug)
is a homeomorph of the complete bipartite graph K3 4 and since F is a face, relabeling P,
and P, if necessary, we may suppose, without loss of generality, that cycle P, U (8F — u;)
separates any point on P; — us — uj from u;. But this contradicts the fact that vis a
neighbor of u;. So Py — uz — ux = 0, that is, P; is just the single line usu,. But then
{ua,ux} is a 2-cut in G separating u; from uz contradicting the 3-connectedness of G.

A graph G is panconnected if for each pair of distinct points ¥ and v in G and
for every integer m, d(u,v) < m < |[V(G)| — 1, there is a path joining u and v of length
m. A graph is Hamiltonian connected if each pair of distinct points is joined by a
spanning (i.e., Hamiltonian) path. A graph is line-Hamiltonian if each line lies on a
Hamilton cycle. A graph G is point-pancyclic if for all points v € V(G) and all integers
m, 3 < m < |V(G)/, there is a cycle of length m containing point v.

It was pointed out by Clark [1] that panconnected => Hamiltonian connected =
line-Hamiltonian => Hamiltonian and panconnected => point-pancyclic = Hamiltonian.

The following result is due to Kanetkar and Rao (Theorem 4 of [4]).

Theorem 3.3. If G is connected, locally 2-connected and claw-free, then G is pan-
connected. ]

15




Using this result, together with the observations of Clark, our next result is immediate.

Corollary 3.4. If G is CFMAXP, then G is panconnected, Hamiltonian-connected,
line-Hamiltonian, point-pancyclic and Hamiltonian. [ |

4. Matching in CFMAXP Graphs

A graph G on p points is bicritical if G — u — v has a perfect matching for all pairs of
distinct points u and v in G. Such graphs play an important role in a canonical theory of
the decomposition of graphs in terms of their maximal (or perfect) matchings. {(Cf. Lovész
and Plummer [6].)

Another concept closely related to bicriticality is that of n-eztendability. (The concept
was introduced for graphs in general in {10] and later studied in the special case of planar
graphs in [11] and [3].) Let p and n be positive integers and suppose n < (p—2)/2. A graph
G is said to be n-extendable if G has a matching of size n and every matching of size n
extends to (i.e., is a subset of) a perfect matching. If G is not bipartite, then the following
two implications hold. G is 2-extendable = G is bicritical = G is 1-extendable. The
first implication follows from Theorem 4.2 of {10} and the second implication is immediate
from the definition of bicritical.

Graphs which are CFMAXP can be categorized nicely with respect to the concepts
of 2-extendability and bicriticality. To wit, we have the following result.

Theorem 4.1. If G is CFMAXP and |V (G)| > 4 and even, then:
(a) G is bicritical and
(b) G either is not 2-extendable, or else is the icosahedron (which is 2-extendable).

Proof. Let u and v be any 2 points in G. Then by Corollary 3.4 there is a Hamiltonian
path P joining u and v in G. Denote this path by P = (u = u1)ug---uag—1{uzx = v).
Since P is of odd length, so is subpath P' = P — 4 —v = ug---ugx_;. But then M =
{uzuz,uqug,...,usk_2u2k—1} is a perfect matching for G —u — v and hence G is bicritical.

On the other hand, it is easy to see that no CFMAXP graph, other than the icosa-
hedron, can be 2-extendable. Let G be CFMAXP. If G has no separating 345-triangle,
appealing to Theorems 2.3 and 2.6, we see that there are only 15 graphs to check and it is
easy to see that the only one of these which is 2-extendable is the icosahedron.

Now suppose that G contains a separating 345-triangle T' = abc. Then it contains
such a triangle with exactly 1 point on its interior. Let this interior point be d. Now let
e be a fifth point of G where ¢ is exterior to the triangle T' = abe, but adjacent to one of
the points a,b or ¢. Say, without loss of generality, that e is adjacent to a. Then clearly
the 2 lines bc and ae do not extend to a perfect matching. ]
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